Last edited by Nikonos
Tuesday, July 28, 2020 | History

3 edition of The precipitation of energetic heavy ions into the upper atmosphere of Jupiter found in the catalog.

The precipitation of energetic heavy ions into the upper atmosphere of Jupiter

M. Horanyi

The precipitation of energetic heavy ions into the upper atmosphere of Jupiter

by M. Horanyi

  • 89 Want to read
  • 39 Currently reading

Published by National Aeronautics and Space Administration in [Washington, DC? .
Written in English

    Subjects:
  • Jupiter (Planet) -- Atmosphere.

  • Edition Notes

    StatementM. Horanyi, T.E. Cravens, J.H. Waite, Jr.
    SeriesNASA-TM -- 101155., NASA technical memorandum -- 101155.
    ContributionsCravens, T. E., Waite, J. H., United States. National Aeronautics and Space Administration.
    The Physical Object
    FormatMicroform
    Pagination1 v.
    ID Numbers
    Open LibraryOL15275017M

      X-ray emission observed from Jupiter’s polar regions appears to be due to the precipitation of energetic heavy ions from the outer magnetosphere and magnetopause region. The upcoming NASA mission to Juno will shed much light on Jovian MI : Thomas Cravens. positive ions created by GCR ionization are H 2 + (mass = 2 amu and He+ (mass = 4 amu). These ions undergo series of reactions with neutral atmospheric molecules, yielding heavy ions with masses approaching amu. The chem-istry that results in the formation of these ions is discussed in Appendix B. In order to assess the effect of the uncer.

    The metal ions enter the corona when variously sized solar flares destroy the traps, and they are evaporated into flux loops in the upper atmosphere. Energy releases in solar flares and associated forms of eruptions occur when magnetic field lines, with their powerful underlying electric currents, are twisted beyond a critical point that can be. The atmosphere of Jupiter is classified into four layers, by increasing altitude: the troposphere, stratosphere, thermosphere and the Earth's atmosphere, Jupiter's lacks a mesosphere. Jupiter does not have a solid surface, and the lowest atmospheric layer, the troposphere, smoothly transitions into the planet's fluid interior. This is a result of having .

      The altitude of the ion population driving this ENA emission is unknown but could extend to altitudes above Saturn’s dense atmosphere (> km), similar to the to 1-MeV ions that were recently detected between km above Jupiter’s 1-bar atmospheric level and were possibly generated by the same mechanism (multiple charge Cited by: We study this variability under different precipitation conditions and taking into account the variability of the neutral atmosphere with the geomagnetic and solar activity. We find that the energetic electron precipitation has a very small effect on the absolute value of the NO + and NO* production by: 1.


Share this book
You might also like
Holy smokes

Holy smokes

guide to Oakham Parish Church.

guide to Oakham Parish Church.

The final chapter of world missions

The final chapter of world missions

Making the Jesuits more modern

Making the Jesuits more modern

involvement of private developers in local agenda 21

involvement of private developers in local agenda 21

Reducing crime on London estates.

Reducing crime on London estates.

The export enhancement program one year later

The export enhancement program one year later

Trends in sports

Trends in sports

The warrior sage

The warrior sage

Rogues justice

Rogues justice

cross-cultural comparison of human resource managers attitudes toward the performance appraisal system

cross-cultural comparison of human resource managers attitudes toward the performance appraisal system

Intonation in the Manchu-Tungus languages according to instrumental-phonetic data

Intonation in the Manchu-Tungus languages according to instrumental-phonetic data

Atomic energy legislation through 93d Congress, 1st session

Atomic energy legislation through 93d Congress, 1st session

The precipitation of energetic heavy ions into the upper atmosphere of Jupiter by M. Horanyi Download PDF EPUB FB2

Evidence for auroral particle precipitation at Jupiter was provided by the ultraviolet spectrometers on board the Voyager 1 and 2 spacecraft and by the International Ultraviolet Explorer (IUE). Magnetospheric measurements made by instruments on board the Voyager spacecraft indicate that energetic sulfur and oxygen ions are precipitating into the upper atmosphere of by: Magnetospheric measurements made by instruments onboard the Voyager spacecraft indicate that energetic sulfur and oxygen ions are precipitating into the upper atmosphere of Jupiter.

We have constructed a theoretical model describing the interaction of precipitating oxygen with the Jovian atmosphere. Evidence for auroral particle precipitation at Jupiter was provided by the ultraviolet spectrometers onboard the Voyagers 1 and 2 spacecraft and by the International Ultraviolet Explorer (IUE).

Magnetospheric measurements made by instruments onboard the Voyager spacecraft show that energetic sulfur and oxygen ions are precipitating into the upper atmosphere of Jupiter. Evidence for auroral particle precipitation at Jupiter was provided by the ultraviolet spectrometers on board the Voyager 1 and 2 spacecraft and by the International Ultraviolet Explorer.

Magnetospheric measurements made by instruments on board the Voyager spacecraft indicate that energetic sulfur and oxygen ions are precipitating into the upper atmosphere of Jupiter.

To extend the range of data required for modeling the secondary-electron production from ion precipitation into the upper atmosphere of Jupiter, inelastic processes for collisions of 1 keV to 25 MeV H+, H, and H- with H 2 are considered.

As in other work treating the dominant heavy-ion species of magnetospheric origin, O and S ions (Schultz et al.,Author: D.R. Schultz, D.R. Schultz, H. Gharibnejad, Thomas Edward Cravens, S.J. Houston. Jupiter's X-ray aurora has been thought to be excited by energetic sulphur and oxygen ions precipitating from the inner magnetosphere into the planet's polar Cited by: The efficiency of heating the atmosphere of a typical hot Jupiter and the planet Jupiter are considered.

The heating efficiency displays only a weak dependence on the characteristic energy of the precipitating electrons. The heating efficiency for the upper atmosphere of Jupiter is also independent of the height, and lies in the range 7–9%.Cited by: 5. Strong radial changes in the phase space distribution of heavy ions observed by Voyager indicated that energetic ions are lost inside 12 Rj as they move inward from the Multispectral Observations of Jupiter's Aurora outer by: Energetic particle precipitation from various sources provide energy input into the upper atmosphere, producing NO x and HO x, which destroy ozone.

The NO x is transported to the stratosphere in polar winter, where it can have an even larger : Robert A. Marshall, Wei Xu, Thomas Woods, Christopher Cully, Allison Jaynes, Cora Randall, Daniel Ba.

Origin of energetic electron precipitation >30 keV into the atmosphere Mai Mai Lam,1 Richard B. Horne,2 Nigel P. Meredith,2 Sarah A. Glauert,2 Tracy Moffat‐Griffin,2 and Janet C. Green3 Received 3 July ; revised 13 October ; accepted 17 November ; published 20 April [1] Energetic electrons are deposited into the atmosphere Cited by:   Remote sensing of Jupiter's aurora from x-ray to radio wavelengths has revealed much about the nature of the jovian aurora and about the impact of ionosphere-magnetosphere coupling on Jupiter's upper atmosphere.

Both energetic heavy ions and electrons energized in the outer magnetosphere contribute to the auroral excitation, as indicated by the Author: J.

Waite, G. Gladstone, S. Bolton, J. Clarke, Jean-Claude Gérard, W. Lewis, L. Tra. The old paradigm portrayed Jupiter's magnetosphere as totally dominated by internal processes (i.e. Io related tori, heavy ions, etc.) where energetic heavy ion precipitation in the inner magnetosphere was solely responsible for the observed auroral phenomena.

Energetic nitrogen ions within the inner magnetosphere E. C., Jr., et al. (), Energetic nitrogen ions within the inner magnetosphere of Saturn, J. Geophys. of energetic heavy ions. As indicated by the combination of x-ray and ultraviolet observations, both energetic heavy ions and electrons energized in the outer magnetosphere contribute to auroral excitation.

Abstract. The ionospheric response to auroral precipitation at the giant planets is reviewed, using models and observations. The emission processes for aurorae at radio, infrared, visible, ultraviolet, and X-ray wavelengths are described, and exemplified using ground- and space-based by: Electron, proton, oxygen, and sulfur energy and pitch angle spectrograms for two separate times over Jupiter's polar region during PJ3.

The colored pixels represent particle intensity with units [cm −2 s −1 sr −1 keV −1]. (a) Signatures of inverted‐V proton and heavy ion distributions centered around by: The upper atmosphere above Jupiter’s Great Red Spot—the largest storm in the Solar System—is hundreds of degrees hotter than anywhere Cited by: Spectral analysis of aurora1 emissions provides a revealing diagnostic of the huge energy input into Jupiter’s atmosphere from aurora1 particle precipitation, the dominant driver of thermospheric processes on a global scale.

Start studying SCIN final exam. Learn vocabulary, terms, and more with flashcards, games, and other study tools. Search. Barium ions carry a 2+ charge, and nitrogen ions carry a 3-charge. What is the cause of Jupiter's extremely high-energy radiation belts.

The neutral atoms then become ions as their electrons are stripped away by interaction with the upper atmosphere of Jupiter. Juno also found signatures of a high-energy heavy ion population within the inner edges of Jupiter's relativistic electron radiation belt -- a region dominated by electrons moving close to the speed of light.

Abstract: The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere.

Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection Cited by: The neutral atoms then become ions as their electrons are stripped away by interaction with the upper atmosphere of Jupiter.

Juno also found signatures of a high-energy heavy ion population within the inner edges of Jupiter’s relativistic electron radiation belt — a region dominated by electrons moving close to the speed of light.The precipitation of energetic heavy ions into the upper atmosphere of Jupiter, J.

Geophys. Res. 93,Waite, J. H. Jr., F. Bagenal, F. Seward, C. Na, G.R. Gladstone, T.E. Cravens, K. C. Hurley, J. T. Clarke, R. Eisner, and S. A.

Stem, ROSAT observations of the Jupiter Aurora, J. Geophys. Res. 99, 14,